www.pakstudynotes.com
CLASS 9TH
COMPUTER SCIENCE

Unit no 02: Number Systems
Exercise:
Give Short answers to the questions.
1. What is the primary purpose of the ASCIl encoding scheme?
Purpose of the ASCII encoding scheme:

ASCII (American Standard Code for Information Interchange) is used to represent text in
computers by assigning a unique numeric code to each letter, digit, and symbol. This allows
computers to store, process, and exchange text data using only numbers, which they
understand. It includes 128 standard characters, covering English letters (A-Z, a—z), digits
(0-9), punctuation marks, and control characters (like Enter and Tab).

2. Explain the difference between ASCII and Unicode?
Difference between ASCII and Unicode:

Feature ASCII Unicode
American Standard Code for Universal Character Encoding
Full Form :
Information Interchange Standard
128 characters only (English letters, Over 140,000 characters (all
Characters . .
digits, symbols) languages, symbols, emojis)
Size Uses 7 bits per character Uses 8, 16, or 32 bits per character
Language . .
Support Supports only English Supports all major languages
Use Case Used in older or simple systems Used in modern websites, apps, and
systems
In Short:

ASCIl is limited to English and uses 7-bit codes, while Unicode is a global standard that
supports all languages and symbols with more bits.

3. How does Unicode handles characters from different languages?
How Unicode Handles Characters from Different Languages:

Unicode assigns a unique number (called a code point) to every character from every language, so
computers around the world can display and process text in any script (like Arabic, Chinese, Urdu,
Hindi, etc.).

+ Simple Explanation:

e Each character, symbol, or emoji has a unique code in Unicode.



www.pakstudynotes.com

CLASS 9TH
COMPUTER SCIENCE

e For example:
o English ‘A’ = U+0041
o Arabic ‘a” = U+0645
o Urdu ‘0¥ = U+0634

These codes work the same way on all devices, which makes Unicode universal and reliable for
different languages.

In Short:

Unicode uses a unique code for every character from every language, allowing text from all scripts
to be stored, displayed, and shared correctly on any system.

4. What is the range of vales for an unsigned 2-byte integer?

The range of values for an unsigned 2-byte integer (which uses 16 bits) is:
e Minimum value: 0
e Maximum value: 65,535

Explanation:

e An unsigned integer does not have a sign (negative), so it can only represent non-negative
values.

e With 16 bits, you can represent values from 0 to (2A16 - 1), which is 65,535.
5. Explain how a negative integer is represented in binary?
How a Negative Integer is Represented in Binary:

Negative integers are typically represented in binary using a method called Two's Complement. This
is the most common method used by computers.

+ Two's Complement Representation Steps:
1. Start with the positive binary representation of the number.
2. Invert all the bits (change 1s to Os and Os to 1s).
3. Add 1 to the result from step 2.
¢+ Example:
Let's represent -5 in 8-bit binary:

1. Start with the positive binary of 5:
5=00000101 (in 8 bits)

2. Invert the bits:
11111010

3. Add1:
11111010+1=11111011



www.pakstudynotes.com
CLASS 9TH
COMPUTER SCIENCE

So, -5 in 8-bit two's complement is: 11111011
6. What is the benefit of using unsigned integers?
Benefit of Using Unsigned Integers:

The main benefit of using unsigned integers is that they can represent a larger range of positive
numbers compared to signed integers of the same bit length.

e Unsigned integers do not reserve any bits for representing negative values. All the bits are
used for representing positive numbers.

e For example, with 8 bits:
o Unsigned integer: Can represent numbers from 0 to 255.

o Signed integer: Can represent numbers from -128 to 127 (since 1 bit is used for the
sign).

In Short:

Unsigned integers are useful when you only need to represent positive values, and they allow you to
store larger numbers within the same bit size.

7. How does the number of bits affect the range of integer values?
The more bits you use, the larger the range of numbers you can represent.
+ For Unsigned Integers:
e Therangeis from 0 to (2" = 1), where n is the number of bits.
e Example:
o 8bits — 0to 255
o 16 bits — 0 to 65,535
o 32 bits — 0to 4,294,967,295
+ For Signed Integers (using Two’s Complement):
e Therangeisfrom=2n"to (2n1-1)
e Example:
o 8bits —» —128 to 127
o 16 bits — —32,768 to 32,767
o 32 bits — —-2,147,483,648 to 2,147,483,647
In Short:

More bits = bigger number range.
Each extra bit doubles the range of values that can be stored.

8. Why are whole numbers commonly used in computing for quantities that cannot be negative?



www.pakstudynotes.com

CLASS 9TH
COMPUTER SCIENCE

Whole numbers (unsigned integers) are commonly used in computing when the values cannot be
negative, because:

¢ 1. Saves Memory Space:

e No need to reserve a bit for the negative sign.

e All bits are used to represent positive values, allowing a larger range.

¢ 2. Logical Accuracy:

e Some quantities don’t make sense as negative, like:

o

o

o

o

o

File sizes
Number of users
Age

Pixels

Iltems in a list

Using unsigned integers ensures the value stays non-negative.

In Short:

Whole numbers (unsigned) are used when values can't be negative because they give a larger
positive range, save memory, and prevent errors.

9. How is the range of floating-point numbers calculated for single precision?

Single-precision floating-point numbers use 32 bits, divided into three parts:

e 1 bit for the sign

e 8 bits for the exponent

e 23 bits for the fraction (mantissa)

Range Calculation Formula:

The general formula is:

sign*mantissa*2°®

e The exponent is stored with a bias of 127

e This allows both very small and very large numbers

Approximate Range of Single Precision:

e Smallest positive number (near zero):
~1.4x10"%

e Largest positive number:
~3.4 x 10*



www.pakstudynotes.com

CLASS 9TH
COMPUTER SCIENCE

10. Why is it important to understand the limitations of floating-point representation in scientific
computing?

It is important because of floating-point numbers:
1. Can’t store all decimal numbers exactly, so small rounding errors can happen.
2. Have a limited range, so very big or very small numbers may not be stored correctly.
3. Can give wrong results in repeated calculations or comparisons.

In scientific computing, even small mistakes can cause big problems, so we must understand these
limits to get correct results. Floating-point numbers are useful but not perfect. Knowing their limits
helps avoid mistakes in scientific or technical work.



