
www.pakstudynotes.com

1ST YEAR
COMPUTER SCIENCE

Unit 1:​ Introduction to Software Development

Exercise Short Answer Questions.

1.​ Differentiate between functional and non-functional requirements.

Difference between Functional and Non Functional Requirements:

Functional Requirements Non-Functional Requirements

Define specific behaviors or functions of​ Define the quality attributes and constrai

 the system​ -nts of the system

What the system should do How the system should perform

Example: User can borrow books​ Example: System should handle 1000

users simultaneously

Directly related to user interactions and

system tasks

Related to system performance, usability,

reliability, etc.

2.​ Explain why the testing phase is important in the Software Development Life Cycle (SDLC), and provide two

reasons for its significance.

Once the software has been developed, it undergoes a crucial phase called testing. Testing is the process of

checking the software to identify any bugs, errors, or issues. Think of it as a quality check to make sure

everything works as expected. During testing, the software is run under various conditions to see if it behaves

correctly.

●​ Testing helps in identifying any hidden issues that were not apparent during development.

●​ By fixing these issues, developers ensure that the software runs smoothly and meets the user's needs,

providing a better and more reliable experience.

3.​ Illustrate the concept of continuous integration in Agile Methodology and discuss its importance in software

development.

Continuous Integration: Regularly merging code changes into a central repository to detect and fix issues early.

Continuous Integration (CI) is a key concept in Agile methodology that means developers regularly add their

code to a shared project often many times a day. Each time someone adds new code, the system automatically

checks to make sure everything still works by running tests. This helps catch errors early, before they become big

problems.

CI is important in software development because it makes the process faster, more reliable, and less stressful.

Instead of waiting weeks or months to combine everyone’s work, CI allows small, frequent updates that are

easier to test and fix. It also encourages teamwork, as all developers work together on the same codebase. In

Agile, where changes happen quickly and often, CI helps teams deliver better software faster and with fewer

bugs.

4.​ Identify the key components of the Scrum framework and analyze how each contributes to effective project

management.

Key Components of Scrum:

●​ Roles: The primary roles in Scrum are the Product Owner, Scrum Master, and Development Team. The

www.pakstudynotes.com

1ST YEAR
COMPUTER SCIENCE

Product Owner defines the product backlog and ensures that the team is working on the highest-priority

items. The Scrum Master facilitates the process, removes obstacles, and ensures that the team follows

Scrum practices. The Development Team, consisting of cross-functional members, is responsible for

delivering the product increments.

●​ Events: Scrum employs a series of events to ensure regular progress and review. These include Sprints

(time-boxed iterations), Sprint Planning, Daily Standups, Sprint Reviews, and Sprint Retrospectives.

●​ Artifacts: Key artifacts in Scrum are the Product Backlog (a prioritized list of features and requirements),

Sprint Backlog (a list of tasks to be completed in a Sprint), and Increment (the working product that is the

result of the current Sprint).

5.​ Evaluate the main steps involved in risk assessment and management and assess their importance in a

software project.

Steps in Risk Assessment and Management:

1.​ Identify Risks: List all potential risks that could affect the project. These could be technical risks, such as

technology changes; operational risks, like resource shortages; or external risks, such as market

fluctuations.

2.​ Analyze Risks: Evaluate the likelihood of each risk occurring and its potential impact on the project. This

helps in prioritizing which risks need more attention.

3.​ Develop Mitigation Strategies: For each significant risk, develop a plan to reduce its likelihood or minimize

its impact. This could involve adding buffers to the schedule, securing backup resources, or conducting

additional testing.

4.​ Monitor and Review: Continuously monitor the project for new risks and review existing risks to adjust

strategies as necessary.

Example: A project is using a new, untested technology. The risk is that the technology may not work as

expected, causing delays and additional costs.

6.​ Explain the purpose of a Use Case Diagram in software development.

Use Case Diagrams are used for several purposes:

1.​ Capturing Functional Requirements: They help in identifying and documenting the functional requirements

of the system.

2.​ Understanding User Interactions: They illustrate how different users will interact with the system.

3.​ Planning and Testing: They aid in planning the development process and in designing test cases for

validating system functionalities.

7.​ Compare and contrast a Sequence Diagram with an Activity Diagram, highlighting the key differences.

Sequence Diagrams:

Sequence Diagrams show how objects in a system interact with each other in a particular sequence. They help
in understanding the flow of messages between objects over time.

Interactions:
open(): User opens each box.
put toys/books/clothes inside: User puts the respective items into the boxes.
close(): User closes each box.

www.pakstudynotes.com

1ST YEAR
COMPUTER SCIENCE

Activity Diagrams illustrate the flow of activities or steps in a process. They are useful for modeling the
logic of complex operations.
Example: In a restaurant management system, an activity diagram can represent the process from 'Order
Placement' to 'Food Preparation' and finally to 'Order Delivery'.

Feature Sequence Diagram Activity Diagram

Purpose Shows how objects interact

step-by-step.

Shows the flow of actions in a

process.

Focus Order of messages between

objects.

Workflow and decision-making

steps.

Time Time flows top to bottom. Time is not shown, only control

flow.

Main

Elements

Objects, messages, lifelines. Activities, arrows, decision

nodes.

Parallel

Actions

Limited support. Supports parallel flows easily.

Best Used

For

Detailing object

communication.

Describing a complete process

or logic flow.

8.​ Describe the Factory Pattern and explain how it differs from directly creating objects, with an example.

Factory Pattern:

The Factory Design Pattern is like having a special workshop that knows how to create different products, but
you don't need to worry about the details of how those products are made. Instead, you just tell the factory
what you need, and it gives you the finished product.
Example:

 Imagine you are building a software for a vehicle company. The company makes Cars and Bikes.

We can create objects like this:

Car car = new Car();

Bike bike = new Bike();

But what if the company adds more vehicles like Truck, Bus, etc.? You’d have to change your code everywhere.

Using Factory Pattern:

Instead, you can use a VehicleFactory that creates the vehicle for you.

VehicleFactory.getVehicle("Car") → returns a Car object

VehicleFactory.getVehicle("Bike") → returns a Bike object

Now you just ask the factory, and it gives you the object — you don’t need to know how it’s created.

