www.pakstudynotes.com
9TH CLASS
COMPUTER SCIENCE

Unit no 07: Computational Thinking
Long Question Answers:

1. Write an algorithm to assign a grade based on the marks obtained by a student. The
grading system follows these criteria:

. 90 and above: A+
. 80to 89: A
. 70to0 79: B
. 60 to 69: C
. Below 60: F
Start
Input: Marks obtained by the student (let’s call it marks)
If marks >= 90, assign grade as A+
Else if 80 <= marks < 90, assign grade as A
Else if 70 <= marks < 80, assign grade as B
Else if 60 <= marks < 70, assign grade as C
Else, assign grade as F
Output: Display the assigned grade
End

2. Explain how you would use algorithm design methods, such as flowcharts and
pseudocode, to solve a complex computational problem. lllustrate your explanation
with a detailed example.

Algorithm design methods provide a range of tools and techniques to tackle various

computational problems effectively. Each method has its strengths and weaknesses, making

it suitable for different types of problems. Understanding different methods allows one to
choose the most appropriate approach for a given problem, leading to more efficient and
elegant solutions. Let's discuss two of these methods.

Flowcharts

Flowcharts are visual representations of the steps in a process or system, depicted using
different symbols connected by arrows. They are widely used in various fields, including
computer science, engineering, and business, to model processes, design systems, and
communicate complex workflows clearly and effectively.

Importance of Flowcharts
Clarity: Flowcharts provide a clear and concise way to represent processes, making them

easier to understand at a glance.

www.pakstudynotes.com
9TH CLASS
COMPUTER SCIENCE

Communication: They are excellent tools for communicating complex

processes to a wide audience, ensuring everyone has a common understanding.

Problem Solving: Flowcharts help identify bottlenecks and inefficiencies in a process,
aiding in problem-solving and optimization.
Documentation: They serve as essential documentation for systems and processes, which
is useful for training and reference purposes.

Flowchart Symbols

Flowchart symbols are visual representations used to illustrate the steps and flow of a
process or system.

Symbol Name Description
Oval (Terminal) Represents the start or end of a
process. Often labeled as "Start" or
"End."
Rectangle (Process) Represents a process, task, or

operation that needs to be performed.

Parallelogram Represents data input or output

(Input/Output) (e.g., reading input from a user or
displaying output on a screen).

Diamond (Decision) Represents a decision point in the
process where the flow can branch
based on a yes/no question or
true/false condition.

www.pakstudynotes.com
9TH CLASS
COMPUTER SCIENCE

Arrow (Flowline) Shows the direction of flow within
the flowchart, connecting the
symbols to indicate the sequence of
steps.

3. Define computational thinking and explain its significance in modern problem-solving.

Provide examples to illustrate how computational thinking can be applied in different
fields.
Computational Thinking (CT) is a problem-solving process that involves a set of skills and
techniques to solve complex problems in a way that a can be executed by a computer.
This approach can be used in various fields beyond computer science, such as biology,
mathematics, and even daily life.

Let's break down computational thinking into its key components:

Decomposition:

Decomposition is the method of breaking down a complicated problem into smaller,
more convenient components. Decomposition is an important step in computational
thinking. It involves dividing a complex problem into smaller, manageable tasks. Let's
take the example of building a birdhouse. This task might look tough at first, but if we
break it down, we can handle each part one at a time.

Here's how we can decompose the task of building a birdhouse. Figure 7.1 shows the
decomposed tasks for building a birdhouse.

Design the Birdhouse: Decide on the size, shape, and design. Sketch a plan and
gather all necessary measurements.

Gather Materials: List all the materials needed such as wood, nails, paint, and tools
like a hammer and saw.

Cut the Wood: Measure and cut the wood into the required pieces according to the
design.

Assemble the Pieces: Follow the plan to assemble the pieces of wood

together to form the structure of the birdhouse.

Paint and Decorate: Paint the birdhouse and add any decorations to make it
attractive for birds.

Install the Birdhouse: Find a suitable location and securely install the
birdhouse where birds can easily access it.

Need to research sizes of holes
for different birds

7

- Build a Birdhouse + Where to put it, some way to attach it
\

Tools, what we need, where to get

Time to do it, when start

4. Discuss the concept of decomposition in computational thinking. Why is it important?
Decomposition is a key notion in computational thinking that entails dividing a large
problem or system into smaller more manageable components. This technique simplifies
the problem making it easier to comprehend, evaluate and resolve. Decomposition, by
focusing on individual components aids in the identification of patterns streamlines the
problem-solving process and ensures clarity. It is especially significant in software
development where huge projects can be broken down into modules such as user
interface design backend development and database management. This modular
approach not only improves knowledge but it also increases efficiency because different
components can be worked on concurrently by different teams or people. Furthermore,
deconstruction makes solutions to smaller sub problems more reusable as they can often
be applied to other projects or settings it also promotes scale ability by allowing systems
to evolve or adapt through changes to individual components rather than redesigning
the entire system over all decomposition is an effective technique for structured
problem-solving modularity and efficiency in computational thinking and beyond.

5. Explain pattern recognition in the context of computational thinking. How does
identifying patterns help in problem-solving?
Pattern recognition involves looking for similarities or patterns among and within
problems. For instance, if you notice that you always forget your homework on Mondays,
you might recognize a pattern and set a reminder specifically for Sundays.

Pattern recognition is an essential aspect of computational thinking. It involves
identifying and understanding regularities or patterns within a set of data or problems.
Let's consider the example of recognizing patterns in the areas of squares.

The upper row in Figure 7.2 represents the side lengths of squares, ranging from 1 to 7.
The lower row shows the corresponding areas of these squares. Here, we can observe a
pattern in how the areas increase.

2
Side Length 1: Area=1 =1
2
Side Length 2: Area=2 =4(1+3)
2
Side Length 3: Area=3 =9(1+3+5)
2
Side Length 4: Area=4 =16(1+3+5+7)
2
Side Length 5: Area=5 =25(1+3+5+7+9)
. 2
Side Length 6: Area=6 =36(1+3+5+7+9+11)

2
Side Length 7: Area=7 =49 (1+3+5+7+9+ 11+ 13)

We can see that the area of each square can be calculated by adding consecutive odd
numbers. For example, the area of a square with a side length of 3 can be found by
adding the first three odd numbers: 1 +3 +5=9.

Visual/Numerical Pattern
Goesup by 1

1 +1 +1 +1

A AN AN A

Side 1| 2

Area | 1| 4| 9(16(|25|36(47

v V V V.V
+7 +9 +11 +13

+
-
+
-
+

w
oy
wu
()]
~J

+

Goes up by consecutive odd numbers starting at 3

What is an abstraction in computational thinking? Discuss its importance and provide
examples of how abstraction can be used to simplify complex problems.

Abstraction is a fundamental concept in problem solving, especially in computer science.
It involves simplifying complex problems by breaking them down into smaller, more
manageable parts, and focusing only on the essential details while ignoring the
unnecessary ones. This helps in understanding, designing, and solving problems more
efficiently.

Definition: Abstraction is the process of hiding the complex details while exposing
only the necessary parts. It helps reduce complexity by allowing us to focus on the
high-level overview without getting lost in the details.

Example:

Making a Cup of Tea - High-level Steps:

1. Boil water.

2. Add tea leaves or a tea bag.

3. Steep for a few minutes.

4. Pour into a cup and add milk/sugar if desired.

Describe what an algorithm is and explain its role in computational thinking. Provide a
detailed example of an algorithm for solving a specific problem and draw the
corresponding flowchart.

An algorithm is a step- by- step collection of instructions to solve a problem or complete
a task similar to following a recipe to bake a cake..

An algorithm is a precise sequence of instructions that can be followed to achieve a
specific goal, like a recipe or a set of directions that tells you exactly what to do and in
what order.

Example: Planting a Tree: Here is a simple algorithm to plant a tree, an activity that can
be very meaningful and beneficial:

Choose a suitable spot in your garden.

Dig a hole that is twice the width of the tree's root ball.

Place the tree in the hole, making sure it is upright.

Fill the hole with soil, pressing it down gently to remove air pockets.

Water the tree generously to help it settle.

Add mulch around the base of the tree to retain moisture.

Water the tree regularly until it is established.

NownswN S

This algorithm gives clear instructions on how to plant a tree, making it easy to follow for
anyone.

Compare and contrast flowcharts and pseudocode as methods for algorithm design.
Discuss the advantages and disadvantages of each method and provide examples
where one might be preferred over the other.

Flowcharts and pseudocode are both tools used to describe algorithms, but they do so in
different ways. Understanding their differences can help you decide which method is more
suitable to use for your scenario.

Pseudocode Flowcharts

® Pseudocode uses plain language and
structured format to describe the steps
of an algorithm.

® It is read like a story, with each step
is written out sequentially.

® Pseudocode communicates the steps
in a detailed, narrative -like format.

® It is particularly useful for
documenting algorithms in a way that
can be easily converted into actual

code in any programming language.

® Flowcharts use graphical symbols and
arrows to represent the flow of an
algorithm.

It is like watching a movie, where each
symbol (such as rectangles, diamonds,
and ovals) represents a different type
of action or decision, and arrows
indicate the

connection and direction of the flow.

Flowchart communicates the process

in a visual format, which can be more
intuitive for understanding the overall
flow and structure.

They are useful for identifying the steps
and decisions in an algorithm at a

glance.

Example:

Algorithm: Presents the pseudocode for checking a valid username and password.

Input: username, password
Output: Validity message
Begin

NounewNE

if (username == validUsername) then
8: if (password == validPassword) then
9: print "Login successful"

10: else

11: print "Invalid password"

12: end if

13: else

14: print "Invalid username"

Procedure Check Credentials (username, password)

validUsername = "user123" {Replace with the actual valid username}
validPassword = "pass123" {Replace with the actual valid password}

15: end if
16: End

9. Explain the concept of a dry run in the context of both flowcharts and
pseudocode. How does performing a dry run help in validating the correctness of
an algorithm?

A dry run involves manually going through the algorithm with sample data to
identify any errors.

Dry Run of a Flowchart

A dry run of a flowchart involves manually walking
through the flowchart step-by-step to understand how

the algorithm works without using a computer. This
helps identify any logical errors and understand the
flow of control.

Example: Calculating the Sum of Two Numbers

Consider the flowchart given in figure 7.7 for adding
two numbers:

Steps to dry run this flowchart:
Start

Input the first number (e.g., 3)
Input the second number (e.g., 5)

g
Add the two é
numbers (3 + 5 = 8)

¥
/]nruu first no, A f‘

|r'||‘.lllt Ind no. B
Y

Sum=A+B
Displgy Sum

BwN

www.pakstudynotes.com
9TH CLASS
COMPUTER SCIENCE

5. Output the result (8)

6. Stop

Dry Run of Pseudocode

A dry run of pseudocode involves manually simulating the execution of the
pseudocode line-by-line.

This helps in verifying the logic and correctness of the
algorithm. Example: Finding the Maximum of Two Numbers
Consider the pseudocode for finding the maximum of two

numbers:

Algorithm 4 FindMax

1. Input: num1, num2

2. if num1 > num2 then

3. max = num

4. else

5. max = num2
6. end if

7. Output: max

Steps to dry run this pseudocode:

1. Input num1 and num2 (e.g., 10 and 15)
2. Check if num1 > num2 (10>15: False)

3. Since the condition is False, max = num2 (max = 15W
4

Output max (15) @

10. What is LARP? Discuss its importance in learning and practicing algorithms.

LARP stands for Logic of Algorithms for resolution of Problems. It is a fun and
interactive way to learn how algorithms work by actually running them and seeing
the results. Think of it as a playground where you can experiment with different
algorithms and understand how they process data.

Why is LARP Important?
LARP helps you:

www.pakstudynotes.com

9TH CLASS
COMPUTER SCIENCE

Understand how algorithms work. For instance, refer to Figure 7.9,
which illustrates an algorithm designed to determine the applicability of
tax on the annual salary of a person.

See the effect of different inputs on the output.

Practice writing and improving your own algorithms.

Wntlng Algorithms

Writing algorithms using LARP involves a structured and simplified approach to
developing logical solutions for computational problems. LARP employs a clear
syntax that begins with a START command and ends with an END command,
ensuring that each step of the algorithm is easy to follow. Within this framework,
instructions are provided in a straightforward manner, such as using WRITE to
display messages, READ to input values, and conditional statements like
IF..THEN...ELSE to handle decision-making processes. By breaking down
complex problems into manageable steps, LARP allows learners to focus on the
logical flow of the algorithm without getting stuck on complex coding syntax. This
method not only aids in understanding the fundamental concepts of algorithm
design but also enhances problem-solving skills by encouraging clear and logical
thinking.

Here's an example of a simple algorithm to check if a number is even or odd:

START

WRITE "Enter a number"
READ number IF
number % 2 == 0 THEN

WRITE "The number is even"
ELSE
WRITE "The number is odd"

ClLamp - Framwarn s taep) = =]
File Edit Visw Ewscwbts Frojct Options Help
p@moalsmanseaaa o rHEobs [
f— 2| START &
Bsn modid e B WRITE “HELLO %th Class Studanca~
ALY | WRITE “"Enter Salary®
N READ Halary
3 Annual salary= Salary ‘*11
— — [WRITE "Annual Salary i@ *
T WHITE Annual salary
AR Peruin] IF Annual salary «1300000 THER
ARAD rebramien o ¥ WRITE "“Ho Tax™
AETE egeanesta by L
" WRITE “Tax appliss
L T r——— w7 ENDIF

CREAY | g3 peas s 1| END

11 parnl Sana| T EAR

UEESERE

www.pakstudynotes.com
9TH CLASS

COMPUTER SCIENCE

Drawing Flowcharts in LARP

Drawing flowcharts in LARP involves visually representing the algorithm's steps
using standard flowchart symbols such as rectangles for processes, diamonds
for decisions, and parallelograms for input/output operations.

[CJLARP - Froawars (s] = m }
Fila Edil View Execuls Project Oplians Halp
L T B LY I —
Broweer 1 A
?-é"mmln o i |:';1 art j
L)
Temglatns : ’ T
L 8 . T /WRITE "Enter Percentags=~/
b " L i
®)

"] L/ '

(| I I
| BEAD Marka |

=
dh [§ e o

F

Compiling projeckt...
Compiling module MAIN...
Linking project...
Exacuting projeck...

=1 Ins

-

i 1
1 1
1 1
;'L .:j 1 . Pﬂ"h-'_ Markes§0 ‘Till- . I
1 L Ld 1
| I ¥ ; | [
&] f]
. 1 3 ! e af
i. i‘: I . T T True 3 / WRITE “Gradeis A+ ._.I' i
A 1 : 1
|:| B o, * i F L. - ! i
¥, :: | / WITE “Orade is Less than A*/ JumITE “Grads is A" i
{ — 1k p g L T d |
r 1 [Y |
:: 1 I i
1 (=] 1
T ¥ m | L |
o = . L o T o o 4 Ty R ——— i
| l | i *
1 \
| Emd
¥ "] \ /

v > »|w

11. How does LARP enhance the understanding and application of computational thinking
principles? Provide a scenario where LARP can be used to improve an algorithm.

LARP improves the knowledge and implementation of computational thinking principles by
taking an immersive, interactive, and collaborative approach to problem solving.
Participants gain hands-on experience decomposing complicated issues, identifying
patterns, abstracting pertinent information, and designing successful algorithms through
role-playing situations that replicate real-world challenges. LARP makes abstract topics
tangible by requiring participants to actively create and test solutions while receiving quick
feedback, which encourages incremental improvements. This strategy focuses on

www.pakstudynotes.com
9TH CLASS
COMPUTER SCIENCE

collaboration and adaptation, reflecting the dynamic nature of computational problem
solving.

Consider a case in which LARP is used to develop a sorting algorithm for organizing
volumes in a library based on height. Participants assume roles such as “librarian”, “books”,
and “observers”.

The librarian employs an initial algorithm, such as bubble sort, to arrange participants
(books) according to their displayed height.

